Seismic Velocity Picking

It is used for normal moveout correction and stacking.

Used ML Approaches:

  • Artificial Neural Networks

Used Neural Networks:

  • FC

  • RNN

  • CNN

  • VGG

  • U-Net

Used Learning Procedures:

  • Unsupervised Learning

  • Supervised Learning

  • Transfer Learning

References:

  1. Calderón-Mac ı´ as, C., Sen, M. K., & Stoffa, P. L. (1998). Automatic NMO correction and velocity estimation by a feedforward neural network. Geophysics, 63(5), 1696-1707.

  2. Biswas, R., Vassiliou, A., Stromberg, R., & Sen, M. K. (2019). Estimating normal moveout velocity using the recurrent neural network. Interpretation, 7(4), T819-T827.

  3. Park, M. J., & Sacchi, M. D. (2020). Automatic velocity analysis using convolutional neural network and transfer learning. Geophysics, 85(1), V33-V43.

  4. Huang, W. L., Gao, F., Liao, J. P., & Chuai, X. Y. (2021). A deep learning network for estimation of seismic local slopes. Petroleum Science, 18(1), 92-105.

  5. Ferreira, R. S., Oliveira, D. A., Semin, D. G., & Zaytsev, S. (2020). Automatic velocity analysis using a hybrid regression approach with convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4464-4470.

  6. Wang, W., McMechan, G. A., Ma, J., & Xie, F. (2021). Automatic velocity picking from semblances with a new deep-learning regression strategy: Comparison with a classification approach. Geophysics, 86(2), U1-U13.

Last updated