Event Discrimination
The task of differentiating between multiple classes of seismic signals of interests
Used ML Approaches:
Artificial Neural Networks
Self Organized Mapping
Linear Regression
Support Vector Machine
Gradient Boosting Machine
Fuzzy Logic
K-Nearest Neighbors
Random Forest
Naive Bayes
Stochastic Configuration Networks
Linear Discriminant Analysis
Hidden Markov Model
Decision Tree
Deep Gaussian Process
Used Neural Networks:
LSTM
Attention
SENET
Autoencoder
CapsNet
TCN
GRU
LeNet
U-Net
GoogleNet
AlexNet
ResNet
SqueezeNet
Inception
Used Learning Procedures:
Supervised Learning
Unsupervised Learning
Transfer Learning
Self-Supervised Learning
Semi-Supervised Learning
References:
Fauvel, K., Balouek-Thomert, D., Melgar, D., Silva, P., Simonet, A., Antoniu, G., ... & Termier, A. (2020, April). A distributed multi-sensor machine learning approach to earthquake early warning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 403-411).
Ku, B., Min, J., Ahn, J. K., Lee, J., & Ko, H. (2020). Earthquake event classification using multitasking deep learning. IEEE Geoscience and Remote Sensing Letters.
Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz, N. B., ... & Earle, P. S. (2021). Leveraging Deep Learning in Global 24/7 Real‐Time Earthquake Monitoring at the National Earthquake Information Center. Seismological Society of America, 92(1), 469-480.
Dowla, F. U., Taylor, S. R., & Anderson, R. W. (1990). Seismic discrimination with artificial neural networks: preliminary results with regional spectral data. Bulletin of the Seismological Society of America, 80(5), 1346-1373.
Dysart, P. S., & Pulli, J. J. (1990). Regional seismic event classification at the NORESS array: seismological measurements and the use of trained neural networks. Bulletin of the Seismological Society of America, 80(6B), 1910-1933.
Pulli, J. J., & Dysart, P. S. (1990). An experiment in the use of trained neural networks for regional seismic event classification. Geophysical Research Letters, 17(7), 977-980.
Tiira, T. (1996). Discrimination of nuclear explosions and earthquakes from teleseismic distances with a local network of short period seismic stations using artificial neural networks. Physics of the earth and planetary interiors, 97(1-4), 247-268.
Shimshoni, Y., & Intrator, N. (1998). Classification of seismic signals by integrating ensembles of neural networks. IEEE transactions on signal processing, 46(5), 1194-1201.
Zadeh, M. A., & Nassery, P. (1999). Application of quadratic neural networks to seismic signal classification. Physics of the Earth and Planetary Interiors, 113(1-4), 103-110.
Del Pezzo, E., Esposito, A., Giudicepietro, F., Marinaro, M., Martini, M., & Scarpetta, S. (2003). Discrimination of earthquakes and underwater explosions using neural networks. Bulletin of the Seismological Society of America, 93(1), 215-223.
Zhou, Z., Cheng, R., Cai, X., Ma, D., & Jiang, C. (2018). Discrimination of rock fracture and blast events based on signal complexity and machine learning. Shock and Vibration, 2018.
Linville, L., Pankow, K., & Draelos, T. (2019). Deep learning models augment analyst decisions for event discrimination. Geophysical Research Letters, 46(7), 3643-3651.
Tibi, R., Linville, L., Young, C., & Brogan, R. (2019). Classification of local seismic events in the Utah region: A comparison of amplitude ratio methods with a spectrogram‐based machine learning approach. Bulletin of the Seismological Society of America, 109(6), 2532-2544.
Ku, B., Kim, G., Ahn, J. K., Lee, J., & Ko, H. (2020). Attention-based convolutional neural network for earthquake event classification. IEEE Geoscience and Remote Sensing Letters.
Linville, L., Anderson, D., Michalenko, J., Galasso, J., & Draelos, T. (2021). Semisupervised Learning for Seismic Monitoring Applications. Seismological Society of America, 92(1), 388-395.
Perry, J. L., & Baumgardt, D. R. (1991, January). Lg depth estimation and ripple fire characterization using artificial neural networks. In Neural Information Processing Systems (Vol. 3, pp. 544-550). Morgan Kaufmann Publishers, San Mateo, California.
Romeo, G., Mele, F., & Morelli, A. (1995). Neural networks and discrimination of seismic signals. Computers & Geosciences, 21(2), 279-288.
Musil, M., & Plešinger, A. (1996). Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps. Bulletin of the Seismological Society of America, 86(4), 1077-1090.
Fedorenko, Y. V., Husebye, E. S., & Ruud, B. O. (1999). Explosion site recognition; neural net discriminator using single three-component stations. Physics of the earth and planetary interiors, 113(1-4), 131-142.
Ursino, A., Langer, H., Scarfi, L., Di Grazia, G., & Gresta, S. (2001). Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily). Annals of Geophysics, 44(4).
Kuyuk, H. S., Yildirim, E., Dogan, E., & Horasan, G. (2011). An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul. Natural Hazards and Earth System Sciences, 11(1), 93-100.
Agliz, D., & Atmani, A. (2013). Seismic signal classification using multi-layer perceptron neural network. International Journal of Computer Applications, 79(15).
Vallejos, J. A., & McKinnon, S. D. (2013). Logistic regression and neural network classification of seismic records. International Journal of Rock Mechanics and Mining Sciences, 62, 86-95.
Mousavi, S. M., Horton, S. P., Langston, C. A., & Samei, B. (2016). Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression. Geophysical Journal International, 207(1), 29-46.
Giudicepietro, F., Esposito, A. M., & Ricciolino, P. (2017). Fast discrimination of local earthquakes using a neural approach. Seismological Research Letters, 88(4), 1089-1096.
Kuyuk, H. S., & Susumu, O. (2018). Real-time classification of earthquake using deep learning. Procedia Computer Science, 140, 298-305.
Mousavi, S. M., Zhu, W., Ellsworth, W., & Beroza, G. (2019). Unsupervised clustering of seismic signals using deep convolutional autoencoders. IEEE Geoscience and Remote Sensing Letters, 16(11), 1693-1697.
Nakano, M., Sugiyama, D., Hori, T., Kuwatani, T., & Tsuboi, S. (2019). Discrimination of seismic signals from earthquakes and tectonic tremor by applying a convolutional neural network to running spectral images. Seismological Research Letters, 90(2A), 530-538.
Peng, P., He, Z., Wang, L., & Jiang, Y. (2020). Automatic classification of microseismic records in underground mining: a deep learning approach. IEEE Access, 8, 17863-17876.
Peng, P., He, Z., Wang, L., & Jiang, Y. (2020). Microseismic records classification using capsule network with limited training samples in underground mining. Scientific Reports, 10(1), 1-16.
Trani, L., Pagani, G. A., Zanetti, J. P. P., Chapeland, C., & Evers, L. (2020). DeepQuake—An application of CNN for seismo-acoustic event classification in The Netherlands. Earth and Space Science Open Archive ESSOAr.
Min, J., Ku, B., & Ko, H. (2021). Feedback Network With Curriculum Learning for Earthquake Event Classification. IEEE Geoscience and Remote Sensing Letters.
Xin, C. W., Jiang, F. X., & Jin, G. D. (2021). Microseismic Signal Classification Based on Artificial Neural Networks. Shock and Vibration, 2021.
Tang, L., Zhang, M., & Wen, L. (2020). Support vector machine classification of seismic events in the Tianshan orogenic belt. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018132.
Ren, T., Wang, P., Lin, M., Liu, X., Chen, H., & Liu, J. (2020). Classification of tectonic and nontectonic earthquakes by an integrated learning algorithm. Pure and Applied Geophysics, 177(1), 455-467.
Akhouayri, E. S., Agliz, D., Zonta, D., & Atmani, A. (2015). A fuzzy expert system for automatic seismic signal classification. Expert Systems with Applications, 42(3), 1013-1027.
Reynen, A., & Audet, P. (2017). Supervised machine learning on a network scale: Application to seismic event classification and detection. Geophysical Journal International, 210(3), 1394-1409.
Liu, Y. H., Yeh, T. C., Chen, K. H., Chen, Y., Yen, Y. Y., & Yen, H. Y. (2019). Investigation of single‐station classification for short tectonic tremor in Taiwan. Journal of Geophysical Research: Solid Earth, 124(8), 8803-8822.
Kortström, J., Uski, M., & Tiira, T. (2016). Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 87, 22-30.
Liu, X., Ren, T., Chen, H., & Chen, Y. (2021). Classification of tectonic and non-tectonic seismicity based on convolutional neural network. Geophysical Journal International, 224(1), 191-198.
Yang, D. H., Zhou, X., Wang, X. Y., & Huang, J. P. (2021). Mirco-earthquake source depth detection using machine learning techniques. Information Sciences, 544, 325-342.
Kang, J. M., Kim, I. M., Lee, S., Ryu, D. W., & Kwon, J. (2019). A deep CNN-based ground vibration monitoring scheme for MEMS sensed data. IEEE Geoscience and Remote Sensing Letters, 17(2), 347-351.
Falsaperla, S., Graziani, S., Nunnari, G., & Spampinato, S. (1996). Automatic classification of volcanic earthquakes by using multi-layered neural networks. Natural Hazards, 13(3), 205-228.
Langer, H., Falsaperla, S., & Thompson, G. (2003). Application of artificial neural networks for the classification of the seismic transients at Soufriere Hills volcano, Montserrat. Geophysical research letters, 30(21).
Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., & Marinaro, M. (2005). Automatic classification of seismic signals at Mt. Vesuvius volcano, Italy, using neural networks. Bulletin of the Seismological Society of America, 95(1), 185-196.
Esposito, A. M., Giudicepietro, F., Scarpetta, S., D’Auria, L., Marinaro, M., & Martini, M. (2006). Automatic discrimination among landslide, explosion-quake, and microtremor seismic signals at Stromboli volcano using neural networks. Bulletin of the Seismological Society of America, 96(4A), 1230-1240.
Langer, H., Falsaperla, S., Powell, T., & Thompson, G. (2006). Automatic classification and a-posteriori analysis of seismic event identification at Soufriere Hills volcano, Montserrat. Journal of volcanology and geothermal research, 153(1-2), 1-10.
Masotti, M., Falsaperla, S., Langer, H., Spampinato, S., & Campanini, R. (2006). Application of Support Vector Machine to the classification of volcanic tremor at Etna, Italy. Geophysical research letters, 33(20).
Bessason, B., Eiríksson, G., Thórarinsson, Ó., Thórarinsson, A., & Einarsson, S. (2007). Automatic detection of avalanches and debris flows by seismic methods. Journal of Glaciology, 53(182), 461-472.
Ibs-von Seht, M. (2008). Detection and identification of seismic signals recorded at Krakatau volcano (Indonesia) using artificial neural networks. Journal of Volcanology and Geothermal Research, 176(4), 448-456.
Masotti, M., Campanini, R., Mazzacurati, L., Falsaperla, S., Langer, H., & Spampinato, S. (2008). TREMOrEC: a software utility for automatic classification of volcanic tremor. Geochemistry, Geophysics, Geosystems, 9(4).
Beyreuther, M., Carniel, R., & Wassermann, J. (2008). Continuous Hidden Markov Models: Application to automatic earthquake detection and classification at Las Canãdas caldera, Tenerife. Journal of Volcanology and Geothermal Research, 176(4), 513-518.
Ibáñez, J. M., Benítez, C., Gutiérrez, L. A., Cortés, G., García-Yeguas, A., & Alguacil, G. (2009). The classification of seismo-volcanic signals using Hidden Markov Models as applied to the Stromboli and Etna volcanoes. Journal of Volcanology and Geothermal Research, 187(3-4), 218-226.
Curilem, G., Vergara, J., Fuentealba, G., Acuña, G., & Chacón, M. (2009). Classification of seismic signals at Villarrica volcano (Chile) using neural networks and genetic algorithms. Journal of volcanology and geothermal research, 180(1), 1-8.
Langer, H., Falsaperla, S., Masotti, M., Campanini, R., Spampinato, S., & Messina, A. (2009). Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at Mt Etna, Italy. Geophysical Journal International, 178(2), 1132-1144.
Köhler, A., Ohrnberger, M., & Scherbaum, F. (2010). Unsupervised pattern recognition in continuous seismic wavefield records using self-organizing maps. Geophysical Journal International, 182(3), 1619-1630.
Hammer, C., Beyreuther, M., & Ohrnberger, M. (2012). A seismic‐event spotting system for volcano fast‐response systems. Bulletin of the Seismological Society of America, 102(3), 948-960.
Hammer, C., Ohrnberger, M., & Fäh, D. (2013). Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophysical Journal International, 192(1), 425-439.
Esposito, A. M., D’Auria, L., Giudicepietro, F., Caputo, T., & Martini, M. (2013). Neural analysis of seismic data: applications to the monitoring of Mt. Vesuvius. Annals of Geophysics, 56(4), 0446.
Esposito, A. M., D’Auria, L., Giudicepietro, F., Peluso, R., & Martini, M. (2013). Automatic recognition of landslides based on neural network analysis of seismic signals: an application to the monitoring of Stromboli volcano (Southern Italy). Pure and Applied Geophysics, 170(11), 1821-1832.
Bicego, M., Acosta-Munoz, C., & Orozco-Alzate, M. (2012). Classification of seismic volcanic signals using hidden-Markov-model-based generative embeddings. IEEE transactions on geoscience and remote sensing, 51(6), 3400-3409.
Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N. M., ... & Crawford, W. (2014). Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano. Journal of Geophysical Research: Earth Surface, 119(5), 1082-1105.
Sick, B., Guggenmos, M., & Joswig, M. (2015). Chances and limits of single-station seismic event clustering by unsupervised pattern recognition. Geophysical Journal International, 201(3), 1801-1813.
Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., & Loew, S. (2016). Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. Journal of Geophysical Research: Earth Surface, 121(2), 351-371.
Maggi, A., Ferrazzini, V., Hibert, C., Beauducel, F., Boissier, P., & Amemoutou, A. (2017). Implementation of a multistation approach for automated event classification at Piton de la Fournaise volcano. Seismological Research Letters, 88(3), 878-891.
Hibert, C., Provost, F., Malet, J. P., Maggi, A., Stumpf, A., & Ferrazzini, V. (2017). Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm. Journal of Volcanology and Geothermal Research, 340, 130-142.
Provost, F., Hibert, C., & Malet, J. P. (2017). Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier. Geophysical Research Letters, 44(1), 113-120.
Titos, M., Bueno, A., García, L., Benítez, M. C., & Ibañez, J. (2018). Detection and classification of continuous volcano-seismic signals with recurrent neural networks. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 1936-1948.
Titos, M., Bueno, A., Garcia, L., & Benitez, C. (2018). A deep neural networks approach to automatic recognition systems for volcano-seismic events. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1533-1544.
Dempsey, D. E., Cronin, S. J., Mei, S., & Kempa-Liehr, A. W. (2020). Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand. Nature communications, 11(1), 1-8.
López-Pérez, M., García, L., Benítez, C., & Molina, R. (2020). A Contribution to Deep Learning Approaches for Automatic Classification of Volcano-Seismic Events: Deep Gaussian Processes. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 3875-3890.
Li, J., Stankovic, L., Pytharouli, S., & Stankovic, V. (2020). Automated Platform for Microseismic Signal Analysis: Denoising, Detection, and Classification in Slope Stability Studies. IEEE Transactions on Geoscience and Remote Sensing.
Bueno, A., Benitez, C., De Angelis, S., Moreno, A. D., & Ibanez, J. M. (2019). Volcano-seismic transfer learning and uncertainty quantification with Bayesian neural networks. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 892-902.
Canario, J. P., Mello, R., Curilem, M., Huenupan, F., & Rios, R. (2020). In-depth comparison of deep artificial neural network architectures on seismic events classification. Journal of Volcanology and Geothermal Research, 401, 106881.
Titos, M., Bueno, A., García, L., Benítez, C., & Segura, J. C. (2019). Classification of isolated volcano-seismic events based on inductive transfer learning. IEEE Geoscience and Remote Sensing Letters, 17(5), 869-873.
Rodriguez, A. B., Benítez, C., Zuccarello, L., De Angelis, S., & Ibáñez, J. M. (2021). Bayesian Monitoring of Seismo-Volcanic Dynamics. IEEE Transactions on Geoscience and Remote Sensing.
Lara, F., Lara-Cueva, R., Larco, J. C., Carrera, E. V., & León, R. (2021). A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano. Journal of Volcanology and Geothermal Research, 409, 107142.
Valentine, A. P., & Woodhouse, J. H. (2010). Approaches to automated data selection for global seismic tomography. Geophysical Journal International, 182(2), 1001-1012.
Diersen, S., Lee, E. J., Spears, D., Chen, P., & Wang, L. (2011). Classification of seismic windows using artificial neural networks. Procedia computer science, 4, 1572-1581.
Valentine, A. P., & Trampert, J. (2012). Data space reduction, quality assessment and searching of seismograms: autoencoder networks for waveform data. Geophysical Journal International, 189(2), 1183-1202.
Paitz, P., Gokhberg, A., & Fichtner, A. (2018). A neural network for noise correlation classification. Geophysical Journal International, 212(2), 1468-1474.
Zhu, H., Sun, M., Fu, H., Du, N., & Zhang, J. (2020). Training a Seismogram Discriminator Based on ResNet. IEEE Transactions on Geoscience and Remote Sensing.
Jakkampudi, S., Shen, J., Li, W., Dev, A., Zhu, T., & Martin, E. R. (2020). Footstep detection in urban seismic data with a convolutional neural network. The Leading Edge, 39(9), 654-660.
Xu, T., Wang, N., & Xu, X. (2019). Seismic target recognition based on parallel recurrent neural network for unattended ground sensor systems. IEEE Access, 7, 137823-137834.
Wang, Y., Cheng, X., Zhou, P., Li, B., & Yuan, X. (2019). Convolutional neural network-based moving ground target classification using raw seismic waveforms as input. IEEE Sensors Journal, 19(14), 5751-5759.
Bin, K., Lin, J., & Tong, X. (2021). Edge Intelligence-Based Moving Target Classification Using Compressed Seismic Measurements and Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters.
Wang, Y., Cheng, X., Li, X., Li, B., & Yuan, X. (2021). Powerset fusion network for target classification in unattended ground sensors. IEEE Sensors Journal.
Jin, G., Ye, B., Wu, Y., & Qu, F. (2018). Vehicle classification based on seismic signatures using convolutional neural network. IEEE Geoscience and Remote Sensing Letters, 16(4), 628-632.
Zhu, Y., Sekiya, H., Okatani, T., Yoshida, I., & Hirano, S. (2021). Acceleration-based deep learning method for vehicle monitoring. IEEE Sensors Journal.
Ahmad, A. B., & Tsuji, T. (2021). Traffic Monitoring System Based on Deep Learning and Seismometer Data. Applied Sciences, 11(10), 4590.
Last updated