Reservoir Characterization
Determining petrophysical properties of the subsurface such as porosity, permeability, or shale fraction that could be an indication of potential hydrocarbon-enriched zones, is an important task in exploration seismology and reservoir characterization.
Used ML Approaches:
Artificial Neural Networks
Used Neural Networks:
FC
CNN
RNN
GAN
U-Net
PINN
Autoencoder
VGG
DenseNet
LSTM
Used Learning Procedures:
Unsupervised Learning
Supervised Learning
Transfer Learning
Semi-Supervised Learning
References:
Saggaf, M. M., Toksöz, M. N., & Mustafa, H. M. (2003). Estimation of reservoir properties from seismic data by smooth neural networks. Geophysics, 68(6), 1969-1983.
Iturrarán-Viveros, U., & Parra, J. O. (2014). Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. Journal of Applied Geophysics, 107, 45-54
Cao, J., & Roy, B. (2017). Time-lapse reservoir property change estimation from seismic using machine learning. The Leading Edge, 36(3), 234-238.
Zhang, G., Wang, Z., & Chen, Y. (2018). Deep learning for seismic lithology prediction. Geophysical Journal International, 215(2), 1368-1387.
Zhang, J., Li, J., Chen, X., & Li, Y. (2020). Seismic lithology/fluid prediction via a hybrid ISD-CNN. IEEE Geoscience and Remote Sensing Letters, 18(1), 13-17.
Zhang, Z. D., & Alkhalifah, T. (2020). High-resolution reservoir characterization using deep learning-aided elastic full-waveform inversion: the North Sea field data example. Geophysics, 85(4), WA137-WA146.
Das, V., & Mukerji, T. (2020). Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics, 85(5), N41-N55.
Priezzhev, I. I., Veeken, P. C. H., Egorov, S. V., & Strecker, U. (2019). Direct prediction of petrophysical and petroelastic reservoir properties from seismic and well-log data using nonlinear machine learning algorithms. The Leading Edge, 38(12), 949-958.
Li, H., Lin, J., Wu, B., Gao, J., & Liu, N. (2021). Elastic Properties Estimation From Prestack Seismic Data Using GGCNNs and Application on Tight Sandstone Reservoir Characterization. IEEE Transactions on Geoscience and Remote Sensing.
Weinzierl, W., & Wiese, B. (2021). Deep learning a poroelastic rock-physics model for pressure and saturation discrimination. Geophysics, 86(1), MR53-MR66.
Li, G., Qiao, Y., Zheng, Y., Li, Y., & Wu, W. (2019). Semi-supervised learning based on generative adversarial network and its applied to lithology recognition. IEEE Access, 7, 67428-67437.
Feng, R., Mejer Hansen, T., Grana, D., & Balling, N. (2020). An unsupervised deep-learning method for porosity estimation based on poststack seismic data. Geophysics, 85(6), M97-M105.
Feng, R. (2020). Unsupervised learning elastic rock properties from pre-stack seismic data. Journal of Petroleum Science and Engineering, 192, 107237.
Zhong, Z., Sun, A. Y., & Wu, X. (2020). Inversion of time‐lapse seismic reservoir monitoring data using cycleGAN: a deep learning‐based approach for estimating dynamic reservoir property changes. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018408.
Liu, M., & Grana, D. (2020). Time-lapse seismic history matching with an iterative ensemble smoother and deep convolutional autoencoder. Geophysics, 85(1), M15-M31.
Zhou, Z., Lin, Y., Zhang, Z., Wu, Y., Wang, Z., Dilmore, R., & Guthrie, G. (2019). A data-driven CO2 leakage detection using seismic data and spatial–temporal densely connected convolutional neural networks. International Journal of Greenhouse Gas Control, 90, 102790.
Li, D., Peng, S., Guo, Y., Lu, Y., & Cui, X. (2021). CO2 storage monitoring based on time-lapse seismic data via deep learning. International Journal of Greenhouse Gas Control, 108, 103336.
Last updated