Seismic Trace Interpolation

It is a technique used to reconstruct the missing traces due to the due to existence of physical obstacles, economic constraints, or broken instruments.

Used ML Approaches:

  • Artificial Neural Networks

Used Neural Networks:

  • CNN

  • FC

  • U-Net

  • Autoencoder

  • ResNe

  • GAN

Used Learning Procedures:

  • Unsupervised Learning

  • Supervised Learning

  • Transfer Learning

References:

  1. Mandelli, S., Lipari, V., Bestagini, P., & Tubaro, S. (2019). Interpolation and denoising of seismic data using convolutional neural networks. arXiv preprint arXiv:1901.07927.

  2. Wang, B., Zhang, N., Lu, W., & Wang, J. (2019). Deep-learning-based seismic data interpolation: A preliminary result. Geophysics, 84(1), V11-V20.

  3. Wang, Y., Wang, B., Tu, N., & Geng, J. (2020). Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder. Geophysics, 85(2), V119-V130.

  4. Wang, B., Zhang, N., Lu, W., Geng, J., & Huang, X. (2019). Intelligent missing shots’ reconstruction using the spatial reciprocity of Green’s function based on deep learning. IEEE Transactions on Geoscience and Remote Sensing, 58(3), 1587-1597.

  5. Tang, S., Ding, Y., Zhou, H. W., & Zhou, H. (2020). Reconstruction of sparsely sampled seismic data via residual U-Net. IEEE Geoscience and Remote Sensing Letters.

  6. Huang, J., & Nowack, R. L. (2020). Machine learning using U-net convolutional neural networks for the imaging of sparse seismic data. Pure and Applied Geophysics, 1-16.

  7. Chang, D., Yang, W., Yong, X., Zhang, G., Wang, W., Li, H., & Wang, Y. (2020). Seismic data interpolation using dual-domain conditional generative adversarial networks. IEEE Geoscience and Remote Sensing Letters.

  8. Chai, X., Tang, G., Wang, S., Peng, R., Chen, W., & Li, J. (2020). Deep learning for regularly missing data reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 58(6), 4406-4423.

  9. Chai, X., Tang, G., Wang, S., Lin, K., & Peng, R. (2020). Deep learning for irregularly and regularly missing 3-D data reconstruction. IEEE Transactions on Geoscience and Remote Sensing.

  10. Chai, X., Tang, G., Wang, S., Lin, K., & Peng, R. (2020). Deep learning for irregularly and regularly missing 3-D data reconstruction. IEEE Transactions on Geoscience and Remote Sensing.

  11. Zhang, H., Yang, X., & Ma, J. (2020). Can learning from natural image denoising be used for seismic data interpolation?. Geophysics, 85(4), WA115-WA136.

  12. Kaur, H., Pham, N., & Fomel, S. (2021). Seismic data interpolation using deep learning with generative adversarial networks. Geophysical Prospecting, 69(2), 307-326.

  13. Pan, S., Chen, K., Chen, J., Qin, Z., Cui, Q., & Li, J. (2020). A partial convolution-based deep-learning network for seismic data regularization1. Computers & Geosciences, 145, 104609.

Last updated