Seismic Velocity Model Building

Inverting for P-wave or S-wave velocity using observed seismic data.

Used ML Approaches:

  • Artificial Neural Networks

  • Dictionary Learning

  • Gaussian Mixture Model

  • Support Vector Machine

Used Neural Networks:

  • FC

  • RNN

  • CNN

  • AlexNet

  • WaveNet

  • U-Net

  • GAN

  • Autoencoder

  • LSTM

  • VGG

  • ResNet

Used Learning Procedures:

  • Unsupervised Learning

  • Supervised Learning

  • Transfer Learning

  • Reinforcement Learning

References:

  1. Zhu, W., Xu, K., Darve, E., & Beroza, G. C. (2021). A general approach to seismic inversion with automatic differentiation. Computers & Geosciences, 151, 104751.

  2. Zhu, L., Liu, E., & McClellan, J. H. (2017). Sparse-promoting full-waveform inversion based on online orthonormal dictionary learning. Geophysics, 82(2), R87-R107.

  3. Li, D., & Harris, J. M. (2018). Full waveform inversion with nonlocal similarity and model-derivative domain adaptive sparsity-promoting regularization. Geophysical Journal International, 215(3), 1841-1864.

  4. Bianco, M. J., & Gerstoft, P. (2018). Travel time tomography with adaptive dictionaries. IEEE Transactions on Computational Imaging, 4(4), 499-511.

  5. de Figueiredo, L. P., Grana, D., Roisenberg, M., & Rodrigues, B. B. (2019). Gaussian mixture Markov chain Monte Carlo method for linear seismic inversion. Geophysics, 84(3), R463-R476.

  6. Na’imi, S. R., Shadizadeh, S. R., Riahi, M. A., & Mirzakhanian, M. (2014). Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach. Journal of Applied Geophysics, 107, 93-101.

  7. Röth, G., & Tarantola, A. (1994). Neural networks and inversion of seismic data. Journal of Geophysical Research: Solid Earth, 99(B4), 6753-6768.

  8. Liu, Z., & Liu, J. (1998). Seismic-controlled nonlinear extrapolation of well parameters using neural networks. Geophysics, 63(6), 2035-2041.

  9. Devilee, R. J. R., Curtis, A., & Roy‐Chowdhury, K. (1999). An efficient, probabilistic neural network approach to solving inverse problems: inverting surface wave velocities for Eurasian crustal thickness. Journal of Geophysical Research: Solid Earth, 104(B12), 28841-28857.

  10. Nath, S. K., Chakraborty, S., Singh, S. K., & Ganguly, N. (1999). Velocity inversion in cross-hole seismic tomography by counter-propagation neural network, genetic algorithm and evolutionary programming techniques. Geophysical Journal International, 138(1), 108-124.

  11. Hampson, D. P., Schuelke, J. S., & Quirein, J. A. (2001). Use of multiattribute transforms to predict log properties from seismic data. Geophysics, 66(1), 220-236.

  12. Dorrington, K. P., & Link, C. A. (2004). Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction. Geophysics, 69(1), 212-221.

  13. Meier, U., Curtis, A., & Trampert, J. (2007). Global crustal thickness from neural network inversion of surface wave data. Geophysical Journal International, 169(2), 706-722.

  14. Moya, A., & Irikura, K. (2010). Inversion of a velocity model using artificial neural networks. Computers & geosciences, 36(12), 1474-1483.

  15. de Wit, R. W., Valentine, A. P., & Trampert, J. (2013). Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks. Geophysical Journal International, 195(1), 408-422.

  16. Lewis, W., & Vigh, D. (2017). Deep learning prior models from seismic images for full-waveform inversion. In SEG Technical Program Expanded Abstracts 2017 (pp. 1512-1517). Society of Exploration Geophysicists.

  17. Moseley, B., Nissen-Meyer, T., & Markham, A. (2020). Deep learning for fast simulation of seismic waves in complex media. Solid Earth, 11(4), 1527-1549.

  18. Araya-Polo, M., Jennings, J., Adler, A., & Dahlke, T. (2018). Deep-learning tomography. The Leading Edge, 37(1), 58-66.

  19. Gupta, S., Kothari, K., de Hoop, M. V., & Dokmanić, I. (2018). Random mesh projectors for inverse problems. arXiv preprint arXiv:1805.11718.

  20. Richardson, A. (2018). Seismic full-waveform inversion using deep learning tools and techniques. arXiv preprint arXiv:1801.07232.

  21. Mosser, L., Kimman, W., Dramsch, J., Purves, S., De la Fuente Briceño, A., & Ganssle, G. (2018, June). Rapid seismic domain transfer: Seismic velocity inversion and modeling using deep generative neural networks. In 80th eage conference and exhibition 2018 (Vol. 2018, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.

  22. Kim, Y., & Nakata, N. (2018). Geophysical inversion versus machine learning in inverse problems. The Leading Edge, 37(12), 894-901.

  23. Araya-Polo, M., Farris, S., & Florez, M. (2019). Deep learning-driven velocity model building workflow. The Leading Edge, 38(11), 872a1-872a9.

  24. Cheng, X., Liu, Q., Li, P., & Liu, Y. (2019). Inverting Rayleigh surface wave velocities for crustal thickness in eastern Tibet and the western Yangtze craton based on deep learning neural networks. Nonlinear Processes in Geophysics, 26(2), 61-71.

  25. Li, S., Liu, B., Ren, Y., Chen, Y., Yang, S., Wang, Y., & Jiang, P. (2019). Deep-learning inversion of seismic data. arXiv preprint arXiv:1901.07733.

  26. Liu, M., & Grana, D. (2019). Accelerating geostatistical seismic inversion using TensorFlow: A heterogeneous distributed deep learning framework. Computers & geosciences, 124, 37-45.

  27. Mao, B., Han, L. G., Feng, Q., & Yin, Y. C. (2019). Subsurface velocity inversion from deep learning-based data assimilation. Journal of Applied Geophysics, 167, 172-179.

  28. Wu, Y., & Lin, Y. (2019). InversionNet: An efficient and accurate data-driven full waveform inversion. IEEE Transactions on Computational Imaging, 6, 419-433.

  29. Wu, Y., & McMechan, G. A. (2019). Parametric convolutional neural network-domain full-waveform inversion. Geophysics, 84(6), R881-R896.

  30. Yang, F., & Ma, J. (2019). Deep-learning inversion: A next-generation seismic velocity model building method. Geophysics, 84(4), R583-R599.

  31. Zheng, Y., Zhang, Q., Yusifov, A., & Shi, Y. (2019). Applications of supervised deep learning for seismic interpretation and inversion. The Leading Edge, 38(7), 526-533.

  32. Zhang, Z. D., & Alkhalifah, T. (2019). Regularized elastic full-waveform inversion using deep learning. Geophysics, 84(5), R741-R751.

  33. Aleardi, M. (2020). Combining discrete cosine transform and convolutional neural networks to speed up the Hamiltonian Monte Carlo inversion of pre‐stack seismic data. Geophysical Prospecting, 68(9), 2738-2761.

  34. Aleardi, M., & Stucchi, E. (2021). A Hybrid Residual Neural Network‐Monte Carlo Approach to invert Surface Wave Dispersion Data. Near Surface Geophysics.

  35. Aleardi, M., & Salusti, A. (2021). Elastic prestack seismic inversion through discrete cosine transform reparameterization and convolutional neural networks. Geophysics, 86(1), R129-R146.

  36. Cao, R., Earp, S., de Ridder, S. A., Curtis, A., & Galetti, E. (2020). Near-real-time near-surface 3D seismic velocity and uncertainty models by wavefield gradiometry and neural network inversion of ambient seismic noise. Geophysics, 85(1), KS13-KS27.

  37. Chen, H., Gao, J., Jiang, X., Gao, Z., & Zhang, W. (2021). Optimization-inspired deep learning high-resolution inversion for seismic data. Geophysics, 86(3), R265-R276.

  38. Chen, Y., & Schuster, G. T. (2020). Seismic inversion by Newtonian machine learning. Geophysics, 85(4), WA185-WA200.

  39. Fabien-Ouellet, G., & Sarkar, R. (2020). Seismic velocity estimation: A deep recurrent neural-network approach. Geophysics, 85(1), U21-U29.

  40. Fang, Z., Fang, H., & Demanet, L. (2020). Deep generator priors for Bayesian seismic inversion. Advances in Geophysics, 61, 179-216.

  41. Feng, S., Lin, Y., & Wohlberg, B. (2021). Multiscale Data-driven Seismic Full-waveform Inversion with Field Data Study. arXiv preprint arXiv:2103.04007.

  42. Hateley, J. C., Roberts, J., Mylonakis, K., & Yang, X. (2020). Deep learning seismic substructure detection using the frozen Gaussian approximation. Journal of Computational Physics, 409, 109313.

  43. He, Q., & Wang, Y. (2021). Reparameterized full-waveform inversion using deep neural networks. Geophysics, 86(1), V1-V13.

  44. Li, Y., Alkhalifah, T., & Zhang, Z. (2021). Deep-learning assisted regularized elastic full waveform inversion using the velocity distribution information from wells. Geophysical Journal International, 226(2), 1322-1335.

  45. Li, Y., Alkhalifah, T., & Guo, Q. (2021). Target-oriented time-lapse waveform inversion using deep learning assisted regularization. Geophysics, 86(4), 1-75.

  46. Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., & Chen, Y. (2021). Deep-learning seismic full-waveform inversion for realistic structural models. Geophysics, 86(1), R31-R44.

  47. Liu, Y., & Zhong, Y. (2020). Machine Learning-Based Seafloor Seismic Prestack Inversion. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4471-4480.

  48. Mohamed, I. A., Othman, A., & Fathy, M. (2020). A new approach to improve reservoir modeling via machine learning. The Leading Edge, 39(3), 170-175.

  49. Mosser, L., Dubrule, O., & Blunt, M. J. (2020). Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. Mathematical Geosciences, 52(1), 53-79.

  50. Ren, Y., Xu, X., Yang, S., Nie, L., & Chen, Y. (2020). A physics-based neural-network way to perform seismic full waveform inversion. IEEE Access, 8, 112266-112277.

  51. Rojas-Gómez, R., Yang, J., Lin, Y., Theiler, J., & Wohlberg, B. (2020). Physics-Consistent Data-Driven Waveform Inversion With Adaptive Data Augmentation. IEEE Geoscience and Remote Sensing Letters.

  52. Sun, B., & Alkhalifah, T. (2020). ML-descent: An optimization algorithm for full-waveform inversion using machine learning. Geophysics, 85(6), R477-R492.

  53. Sun, J., Niu, Z., Innanen, K. A., Li, J., & Trad, D. O. (2020). A theory-guided deep-learning formulation and optimization of seismic waveform inversion. Geophysics, 85(2), R87-R99.

  54. Sun, J., Innanen, K. A., & Huang, C. (2021). Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysis. Geophysics, 86(3), R303-R317.

  55. Wang, W., & Ma, J. (2020). Velocity model building in a crosswell acquisition geometry with image-trained artificial neural networks. Geophysics, 85(2), U31-U46.

  56. Yuan, C., Zhang, X., Jia, X., & Zhang, J. (2020). Time-lapse velocity imaging via deep learning. Geophysical Journal International, 220(2), 1228-1241.

  57. Zhang, T., Sun, J., Innanen, K. A., & Trad, D. (2021). Numerical analysis of a deep learning formulation of elastic full waveform inversion with high order total variation regularization in different parameterization. arXiv preprint arXiv:2101.08924.

  58. Zhang, W., Gao, J., Gao, Z., & Chen, H. (2020). Adjoint-Driven Deep-Learning Seismic Full-Waveform Inversion. IEEE Transactions on Geoscience and Remote Sensing.

  59. Zhang, W., & Gao, J. (2021). Deep-Learning Full-Waveform Inversion Using Seismic Migration Images. IEEE Transactions on Geoscience and Remote Sensing.

  60. Zhang, Z., & Lin, Y. (2020). Data-driven seismic waveform inversion: A study on the robustness and generalization. IEEE Transactions on Geoscience and Remote sensing, 58(10), 6900-6913.

  61. Zhu, W., Xu, K., Darve, E., Biondi, B., & Beroza, G. C. (2020). Integrating Deep Neural Networks with Full-waveform Inversion: Reparametrization, Regularization, and Uncertainty Quantification. arXiv preprint arXiv:2012.11149.

  62. Zeng, Q., Feng, S., Wohlberg, B., & Lin, Y. (2021). InversionNet3D: Efficient and Scalable Learning for 3D Full Waveform Inversion. arXiv preprint arXiv:2103.14158.

  63. Cheng, X., & Jiang, K. (2020). Crustal model in eastern Qinghai-Tibet plateau and western Yangtze craton based on conditional variational autoencoder. Physics of the Earth and Planetary Interiors, 309, 106584.

  64. Kothari, K., de Hoop, M., & Dokmanić, I. (2020). Learning the geometry of wave-based imaging. arXiv preprint arXiv:2006.05854.

  65. de Hoop, M. V., Lassas, M., & Wong, C. A. (2019). Deep learning architectures for nonlinear operator functions and nonlinear inverse problems. arXiv preprint arXiv:1912.11090.

Last updated