Salt Body Detection
Identifying subsurface salt bodies is indispensable for hydrocarbon exploration and drilling-path planning.
Used ML Approaches:
Artificial Neural Networks
Support Vector Machine
K-Nearest Neighbors
Used Neural Networks:
RNN
CNN
FC
AlexNet
U-Net
ResNet
DenseNet
Used Learning Procedures:
Supervised Learning
Semi-Supervised Learning
Ensemble Learning
References:
Huang, K. Y., Liu, W. H., & Chang, I. C. (1989). Hopfield model of neural networks for detection of bright spots. In SEG Technical Program Expanded Abstracts 1989 (pp. 444-446). Society of Exploration Geophysicists.
Waldeland, A. U., Jensen, A. C., Gelius, L. J., & Solberg, A. H. S. (2018). Convolutional neural networks for automated seismic interpretation. The Leading Edge, 37(7), 529-537.
Babakhin, Y., Sanakoyeu, A., & Kitamura, H. (2019, September). Semi-supervised segmentation of salt bodies in seismic images using an ensemble of convolutional neural networks. In German Conference on Pattern Recognition (pp. 218-231). Springer, Cham.
Shi, Y., Wu, X., & Fomel, S. (2019). SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network. Interpretation, 7(3), SE113-SE122.
Milosavljević, A. (2020). Identification of salt deposits on seismic images using deep learning method for semantic segmentation. ISPRS International Journal of Geo-Information, 9(1), 24.
Sen, S., Kainkaryam, S., Ong, C., & Sharma, A. (2020). SaltNet: A production-scale deep learning pipeline for automated salt model building. The Leading Edge, 39(3), 195-203.
Rizk, Y., Partamian, H., & Awad, M. (2017). Toward real-time seismic feature analysis for bright spot detection: A distributed approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 322-331.
Di, H., Gao, D., & AlRegib, G. (2019). Developing a seismic texture analysis neural network for machine-aided seismic pattern recognition and classification. Geophysical Journal International, 218(2), 1262-1275.
Shi, Y., Wu, X., & Fomel, S. (2021). Interactively tracking seismic geobodies with a deep-learning flood-filling network. Geophysics, 86(1), A1-A5.
Wrona, T., Pan, I., Bell, R. E., Gawthorpe, R., Fossen, H., & Brune, S. (2020). Deep learning of geological structures in seismic reflection data.
Last updated