Event Detection

It is the task of identify only one signal of interest among variety of recorded events.

The task of identifying one seismic event of interest among all different types of signals and noise recorded by a seismometer. Here we differentiate between event discrimination (i.e. a task of identifying multiple classes of signal of interests) and event detection (i.e. the binary classification task of identifying the event and non-event signals).

Used ML Approaches:

  • Artificial Neural Networks

  • Support Vector Machine

  • Dynamic Bayesian Networks

  • Random Forest

  • Hidden Markov Model

  • K-Nearest Neighbors

  • Decision Tree

  • Dictionary Learning

  • Gaussian Process

Used Neural Networks:

  • FC

  • RNN

  • CNN

  • GAN

  • LSTM

  • TCN

  • GRU

  • Attention

  • 'VGG

  • YOLO

  • U-Net

  • LeNet

  • Transformer

  • ResNet

  • CapsNet

  • Siamese

  • GoogleNet

  • AlexNet

  • SqueezeNet

Used Learning Procedures:

  • Supervised Learning

  • Reinforcement Learning

  • Unsupervised Learning

  • Transfer Learning

References:

  1. Wang, J., & Teng, T. L. (1995). Artificial neural network-based seismic detector. Bulletin of the Seismological Society of America, 85(1), 308-319.

  2. Tiira, T. (1999). Detecting teleseismic events using artificial neural networks. Computers & Geosciences, 25(8), 929-938.

  3. Madureira, G., & Ruano, A. E. (2009). A neural network seismic detector. IFAC Proceedings Volumes, 42(19), 304-309.

  4. Riggelsen, C., & Ohrnberger, M. (2014). A machine learning approach for improving the detection capabilities at 3C seismic stations. Pure and Applied Geophysics, 171(3), 395-411.

  5. Wiszniowski, J., Plesiewicz, B. M., & Trojanowski, J. (2014). Application of real time recurrent neural network for detection of small natural earthquakes in Poland. Acta Geophysica, 62(3), 469-485.

  6. Doubravová, J., Wiszniowski, J., & Horálek, J. (2016). Single layer recurrent neural network for detection of swarm-like earthquakes in W-Bohemia/Vogtland—the method. Computers & Geosciences, 93, 138-149.

  7. Draelos, T. J., Peterson, M. G., Knox, H. A., Lawry, B. J., Phillips‐Alonge, K. E., Ziegler, A. E., ... & Faust, A. (2018). Dynamic tuning of seismic signal detector trigger levels for local networks. Bulletin of the Seismological Society of America, 108(3A), 1346-1354.

  8. Li, Z., Meier, M. A., Hauksson, E., Zhan, Z., & Andrews, J. (2018). Machine learning seismic wave discrimination: Application to earthquake early warning. Geophysical Research Letters, 45(10), 4773-4779.

  9. Mu, D., Cicotti, P., Cui, Y., Lee, E. J., Langer, F. J., Qiu, J., ... & Morrin, C. (2018). Deep learning for seismic template recognition. In Proceedings of the Practice and Experience on Advanced Research Computing (pp. 1-6).

  10. Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2), e1700578.

  11. Zhang, X., Lin, J., Chen, Z., Sun, F., Zhu, X., & Fang, G. (2018). An efficient neural-network-based microseismic monitoring platform for hydraulic fracture on an edge computing architecture. Sensors, 18(6), 1828.

  12. Dickey, J., Borghetti, B., & Junek, W. (2019). Improving regional and teleseismic detection for single-trace waveforms using a deep temporal convolutional neural network trained with an array-beam catalog. Sensors, 19(3), 597.

  13. Doubravová, J., & Horálek, J. (2019). Single Layer Recurrent Neural Network for detection of local swarm-like earthquakes—the application. Geophysical Journal International, 219(1), 672-689.

  14. Kong, Q., Inbal, A., Allen, R. M., Lv, Q., & Puder, A. (2019). Machine learning aspects of the MyShake global smartphone seismic network. Seismological Research Letters, 90(2A), 546-552.

  15. Meier, M. A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S., Kundzicz, P., ... & Yue, Y. (2019). Reliable real‐time seismic signal/noise discrimination with machine learning. Journal of Geophysical Research: Solid Earth, 124(1), 788-800.

  16. Meyer, M., Weber, S., Beutel, J., & Thiele, L. (2019). Systematic identification of external influences in multi-year microseismic recordings using convolutional neural networks. Earth Surface Dynamics, 7(1), 171-190.

  17. Mousavi, S. M., Zhu, W., Sheng, Y., & Beroza, G. C. (2019). CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection. Scientific reports, 9(1), 1-14.

  18. Wu, Y., Lin, Y., Zhou, Z., Bolton, D. C., Liu, J., & Johnson, P. (2018). DeepDetect: A cascaded region-based densely connected network for seismic event detection. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 62-75.

  19. Chin, T. L., Chen, K. Y., Chen, D. Y., & Lin, D. E. (2020). Intelligent real-time earthquake detection by recurrent neural networks. IEEE Transactions on Geoscience and Remote Sensing, 58(8), 5440-5449.

  20. Fauvel, K., Balouek-Thomert, D., Melgar, D., Silva, P., Simonet, A., Antoniu, G., ... & Termier, A. (2020, April). A distributed multi-sensor machine learning approach to earthquake early warning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 403-411).

  21. Huang, X., Lee, J., Kwon, Y. W., & Lee, C. H. (2020, August). CrowdQuake: A networked system of low-cost sensors for earthquake detection via deep learning. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 3261-3271).

  22. Khan, I., Choi, S., & Kwon, Y. W. (2020). Earthquake detection in a static and dynamic environment using supervised machine learning and a novel feature extraction method. Sensors, 20(3), 800.

  23. Kim, G., Ku, B., & Ko, H. (2020). Multifeature fusion-based earthquake event classification using transfer learning. IEEE Geoscience and Remote Sensing Letters, 18(6), 974-978.

  24. Ku, B., Min, J., Ahn, J. K., Lee, J., & Ko, H. (2020). Earthquake event classification using multitasking deep learning. IEEE Geoscience and Remote Sensing Letters.

  25. Mężyk, M., Chamarczuk, M., & Malinowski, M. (2021). Automatic Image-Based Event Detection for Large-N Seismic Arrays Using a Convolutional Neural Network. Remote Sensing, 13(3), 389.

  26. Mosher, S. G., & Audet, P. (2020). Automatic Detection and Location of Seismic Events From Time‐Delay Projection Mapping and Neural Network Classification. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB019426.

  27. Rouet‐Leduc, B., Hulbert, C., McBrearty, I. W., & Johnson, P. A. (2020). Probing slow earthquakes with deep learning. Geophysical research letters, 47(4), e2019GL085870.

  28. Stork, A. L., Baird, A. F., Horne, S. A., Naldrett, G., Lapins, S., Kendall, J. M., ... & Williams, A. (2020). Application of machine learning to microseismic event detection in distributed acoustic sensing data. Geophysics, 85(5), KS149-KS160.

  29. Automating the Detection of Dynamically Triggered Earthquakes via a Deep Metric Learning Algorithm

  30. Tous, R., Alvarado, L., Otero, B., Cruz, L., & Rojas, O. (2020). Deep Neural Networks for Earthquake Detection and Source Region Estimation in North‐Central Venezuela. Bulletin of the Seismological Society of America, 110(5), 2519-2529.

  31. Wang, T., Trugman, D., & Lin, Y. (2019). SeismoGen: Seismic Waveform Synthesis Using Generative Adversarial Networks. arXiv preprint arXiv:1911.03966.

  32. Wilkins, A. H., Strange, A., Duan, Y., & Luo, X. (2020). Identifying microseismic events in a mining scenario using a convolutional neural network. Computers & Geosciences, 137, 104418.

  33. Zhang, H., Ma, C., Pazzi, V., Li, T., & Casagli, N. (2020). Deep Convolutional Neural Network for Microseismic Signal Detection and Classification. Pure and Applied Geophysics, 177(12), 5781-5797.

  34. Othman, A., Iqbal, N., Hanafy, S. M., & Waheed, U. B. (2021). Automated Event Detection and Denoising Method for Passive Seismic Data Using Residual Deep Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing.

  35. Saad, O. M., Huang, G., Chen, Y., Savvaidis, A., Fomel, S., Pham, N., & Chen, Y. (2021). SCALODEEP: A Highly Generalized Deep Learning Framework for Real‐Time Earthquake Detection. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB021473.

  36. Shakeel, M., Itoyama, K., Nishida, K., & Nakadai, K. (2021). Detecting earthquakes: a novel deep learning-based approach for effective disaster response. Applied Intelligence, 1-11.

  37. Yang, S., Hu, J., Zhang, H., & Liu, G. (2021). Simultaneous earthquake detection on multiple stations via a convolutional neural network. Seismological Society of America, 92(1), 246-260.

  38. Yano, K., Shiina, T., Kurata, S., Kato, A., Komaki, F., Sakai, S. I., & Hirata, N. (2021). Graph‐partitioning based convolutional neural network for earthquake detection using a seismic array. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB020269.

  39. Jiang, W., Xi, C., Wang, W., & Ruan, Y. (2021). Time Window Selection of Seismic Signals for Waveform Inversion Based on Deep Learning. IEEE Transactions on Geoscience and Remote Sensing.

  40. Beyreuther, M., & Wassermann, J. (2008). Continuous earthquake detection and classification using discrete Hidden Markov Models. Geophysical Journal International, 175(3), 1055-1066.

  41. Madureira, G., Ruano, A. E., & Ruano, M. G. (2013). On-line operation of an intelligent seismic detector. In Soft Computing Applications (pp. 531-542). Springer, Berlin, Heidelberg.

  42. Kortström, J., Uski, M., & Tiira, T. (2016). Automatic classification of seismic events within a regional seismograph network. Computers & Geosciences, 87, 22-30.

  43. Chin, T. L., Huang, C. Y., Shen, S. H., Tsai, Y. C., Hu, Y. H., & Wu, Y. M. (2019). Learn to Detect: Improving the Accuracy of Earthquake Detection. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 8867-8878.

  44. Wang, K., Ellsworth, W. L., Beroza, G. C., Williams, G., Zhang, M., Schroeder, D., & Rubinstein, J. (2019). Seismology with dark data: Image‐based processing of analog records using machine learning for the Rangely earthquake control experiment. Seismological Research Letters, 90(2A), 553-562.

  45. Zhou, Z., Lin, Y., Zhang, Z., Wu, Y., & Johnson, P. (2019). Earthquake detection in 1D time‐series data with feature selection and dictionary learning. Seismological Research Letters, 90(2A), 563-572.

  46. Qu, S., Guan, Z., Verschuur, E., & Chen, Y. (2019). Automatic high-resolution microseismic event detection via supervised machine learning. Geophysical Journal International.

  47. Li, J., He, M., Cui, G., Wang, X., Wang, W., & Wang, J. (2020). A novel method of seismic signal detection using waveform features. Applied Sciences, 10(8), 2919.

  48. Dokht, R. M., Kao, H., Visser, R., & Smith, B. (2019). Seismic event and phase detection using time–frequency representation and convolutional neural networks. Seismological Research Letters, 90(2A), 481-490.

  49. Zhou, Y., Yue, H., Kong, Q., & Zhou, S. (2019). Hybrid event detection and phase‐picking algorithm using convolutional and recurrent neural networks. Seismological Research Letters, 90(3), 1079-1087.

  50. Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., & Fang, L. (2019). Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7. 9 Wenchuan Earthquake. Physics of the Earth and Planetary Interiors, 293, 106261.

  51. Guo, C., Zhu, T., Gao, Y., Wu, S., & Sun, J. (2020). Aenet: Automatic picking of p-wave first arrivals using deep learning. IEEE Transactions on Geoscience and Remote Sensing, 59(6), 5293-5303.

  52. Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 1-12.

  53. Soto, H., & Schurr, B. (2021). DeepPhasePick: a method for detecting and picking seismic phases from local earthquakes based on highly optimized convolutional and recurrent deep neural networks. Geophysical Journal International, 227(2), 1268-1294.

  54. Zhu, W., Tai, K. S., Mousavi, S. M., & Beroza, G. C. (2019, December). An end-to-end earthquake monitoring method for joint earthquake detection and association using deep learning. In AGU Fall Meeting Abstracts (Vol. 2019, pp. S43D-0681).

  55. Saad, O. M., & Chen, Y. (2020). Earthquake detection and P-wave arrival time picking using capsule neural network. IEEE Transactions on Geoscience and Remote Sensing.

  56. Wiszniowski, J., Plesiewicz, B., & Lizurek, G. (2021). Machine learning applied to anthropogenic seismic events detection in Lai Chau reservoir area, Vietnam. Computers & Geosciences, 146, 104628.

  57. Xiao, Z., Wang, J., Liu, C., Li, J., Zhao, L., & Yao, Z. (2021). Siamese Earthquake Transformer: A pair‐input deep‐learning model for earthquake detection and phase picking on a seismic array. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB021444.

  58. Canario, J. P., Mello, R., Curilem, M., Huenupan, F., & Rios, R. (2020). In-depth comparison of deep artificial neural network architectures on seismic events classification. Journal of Volcanology and Geothermal Research, 401, 106881.

  59. Lara, F., Lara-Cueva, R., Larco, J. C., Carrera, E. V., & León, R. (2021). A deep learning approach for automatic recognition of seismo-volcanic events at the Cotopaxi volcano. Journal of Volcanology and Geothermal Research, 409, 107142.

  60. Gabbard, H., Williams, M., Hayes, F., & Messenger, C. (2018). Matching matched filtering with deep networks for gravitational-wave astronomy. Physical review letters, 120(14), 141103.

  61. George, D., & Huerta, E. A. (2018). Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data. Physics Letters B, 778, 64-70.

  62. Mukund, N., Coughlin, M., Harms, J., Biscans, S., Warner, J., Pele, A., ... & Swinkels, B. (2019). Ground motion prediction at gravitational wave observatories using archival seismic data. Classical and Quantum Gravity, 36(8), 085005.

  63. Krastev, P. G. (2020). Real-time detection of gravitational waves from binary neutron stars using artificial neural networks. Physics Letters B, 803, 135330.

  64. Shen, H., & Shen, Y. (2021). Array‐Based Convolutional Neural Networks for Automatic Detection and 4D Localization of Earthquakes in Hawai ‘i. Seismological Research Letters.

Last updated