Earthquake Forecasting

The probabilistic forecasting (months or years in advance) of future mainshock characteristics, such as the event magnitude in a time or spacetime window.

Used ML Approaches:

  • Decision Tree

  • Logistic Regression

  • K‐Means

  • K-Nearest Neighbors

  • Random Forest

  • Support Vector Machine

  • Artificial Neural Networks

  • Self Organized Mapping

Used Neural Networks:

  • FC

  • RNN

  • CNN

  • LSTM

  • TCN

  • Autoencoder

  • Attention

Used Learning Procedures:

  • Supervised Learning

  • Unsupervised Learning

  • Semi-Supervised Learning

  • Reinforcement Learning

  • Federated Learning

References:

  1. Ren, C. X., Dorostkar, O., Rouet‐Leduc, B., Hulbert, C., Strebel, D., Guyer, R. A., ... & Carmeliet, J. (2019). Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault. Geophysical Research Letters, 46(13), 7395-7403.

  2. Pawley, S., Schultz, R., Playter, T., Corlett, H., Shipman, T., Lyster, S., & Hauck, T. (2018). The geological susceptibility of induced earthquakes in the Duvernay play. Geophysical Research Letters, 45(4), 1786-1793.

  3. Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., & Lallemand, S. (2019). Machine learning can predict the timing and size of analog earthquakes. Geophysical Research Letters, 46(3), 1303-1311.

  4. Schäfer, A. M., & Wenzel, F. (2019). Global Megathrust earthquake hazard—maximum magnitude assessment using multi-variate machine learning. Frontiers in Earth Science, 7, 136.

  5. Rouet‐Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., & Johnson, P. A. (2017). Machine learning predicts laboratory earthquakes. Geophysical Research Letters, 44(18), 9276-9282.

  6. Rouet‐Leduc, B., Hulbert, C., Bolton, D. C., Ren, C. X., Riviere, J., Marone, C., ... & Johnson, P. A. (2018). Estimating fault friction from seismic signals in the laboratory. Geophysical Research Letters, 45(3), 1321-1329.

  7. Lubbers, N., Bolton, D. C., Mohd‐Yusof, J., Marone, C., Barros, K., & Johnson, P. A. (2018). Earthquake catalog‐based machine learning identification of laboratory fault states and the effects of magnitude of completeness. Geophysical Research Letters, 45(24), 13-269.

  8. Hulbert, C., Rouet-Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., & Marone, C. (2019). Similarity of fast and slow earthquakes illuminated by machine learning. Nature Geoscience, 12(1), 69-74.

  9. Bolton, D. C., Shokouhi, P., Rouet‐Leduc, B., Hulbert, C., Rivière, J., Marone, C., & Johnson, P. A. (2019). Characterizing acoustic signals and searching for precursors during the laboratory seismic cycle using unsupervised machine learning. Seismological Research Letters, 90(3), 1088-1098.

  10. Junek, W. N., Jones, L. W., & Woods, M. T. (2012). Use of logistic regression for forecasting short-term volcanic activity. Algorithms, 5(3), 330-363.

  11. Aminzadeh, F., Katz, S., & Aki, K. (1994). Adaptive neural nets for generation of artificial earthquake precursors. IEEE transactions on geoscience and remote sensing, 32(6), 1139-1143.

  12. Wang, W., Wu, G. F., & Song, X. Y. (2000). The application of neural networks to comprehensive prediction by seismology prediction method. Acta Seismologica Sinica, 13(2), 210-215.

  13. Bodri, B. (2001). A neural-network model for earthquake occurrence. Journal of Geodynamics, 32(3), 289-310.

  14. Plagianakos, V. P., & Tzanaki, E. (2001, July). Chaotic analysis of seismic time series and short term forecasting using neural networks. In IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222) (Vol. 3, pp. 1598-1602). IEEE.

  15. Negarestani, A., Setayeshi, S., Ghannadi-Maragheh, M., & Akashe, B. (2002). Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. Journal of environmental radioactivity, 62(3), 225-233.

  16. Luongo, G., Marandola, C., & Mazzarella, A. (2004). Neural forecasting of seismicity and ground displacements in different volcanic areas. Journal of Volcanology and geothermal Research, 130(1-2), 133-146.

  17. Panakkat, A., & Adeli, H. (2007). Neural network models for earthquake magnitude prediction using multiple seismicity indicators. International journal of neural systems, 17(01), 13-33.

  18. Adeli, H., & Panakkat, A. (2009). A probabilistic neural network for earthquake magnitude prediction. Neural networks, 22(7), 1018-1024.

  19. Lakshmi, S. S., & Tiwari, R. K. (2009). Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches. Computers & Geosciences, 35(2), 191-204.

  20. Madahizadeh, R., & ALAMEHZADEH, M. (2009). Prediction of aftershocks distribution using artificial neural networks and its application on the May 12, 2008 Sichuan earthquake.

  21. Namekar, S., Yamazaki, Y., & Cheung, K. F. (2009). Neural network for tsunami and runup forecast. Geophysical research letters, 36(8).

  22. Panakkat, A., & Adeli, H. (2009). Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators. Computer‐Aided Civil and Infrastructure Engineering, 24(4), 280-292.

  23. Alarifi, A. S., Alarifi, N. S., & Al-Humidan, S. (2012). Earthquakes magnitude predication using artificial neural network in northern Red Sea area. Journal of King Saud University-Science, 24(4), 301-313.

  24. Kamatchi, P., Rao, K. B., Iyer, N. R., & Arunachalam, S. (2012). Neural network-based methodology for inter-arrival times of earthquakes. Natural hazards, 64(2), 1291-1303.

  25. Alexandridis, A., Chondrodima, E., Efthimiou, E., Papadakis, G., Vallianatos, F., & Triantis, D. (2013). Large earthquake occurrence estimation based on radial basis function neural networks. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5443-5453.

  26. Martínez-Álvarez, F., Reyes, J., Morales-Esteban, A., & Rubio-Escudero, C. (2013). Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula. Knowledge-Based Systems, 50, 198-210.

  27. Reyes, J., Morales-Esteban, A., & Martínez-Álvarez, F. (2013). Neural networks to predict earthquakes in Chile. Applied Soft Computing, 13(2), 1314-1328.

  28. Zamani, A., Sorbi, M. R., & Safavi, A. A. (2013). Application of neural network and ANFIS model for earthquake occurrence in Iran. Earth Science Informatics, 6(2), 71-85.

  29. Buscema, P. M., Massini, G., & Maurelli, G. (2015). Artificial Adaptive Systems to predict the magnitude of earthquakes. Bollettino di Geofisica Teorica ed Applicata, 56(2).

  30. Mosavi, M. R., Kavei, M., Shabani, M., & Khani, Y. H. (2016). Interevent times estimation of major and continuous earthquakes in Hormozgan region based on radial basis function neural network. Geodesy and Geodynamics, 7(1), 64-75.

  31. Asencio-Cortés, G., Martínez-Álvarez, F., Troncoso, A., & Morales-Esteban, A. (2017). Medium–large earthquake magnitude prediction in Tokyo with artificial neural networks. Neural Computing and Applications, 28(5), 1043-1055.

  32. Asim, K. M., Martínez-Álvarez, F., Basit, A., & Iqbal, T. (2017). Earthquake magnitude prediction in Hindukush region using machine learning techniques. Natural Hazards, 85(1), 471-486.

  33. Huang, J. P., Wang, X. A., Zhao, Y., Xin, C., & Xiang, H. (2018). Large earthquake magnitude prediction in Taiwan based on deep learning neural network. Neural Network World, 28(2), 149-160.

  34. Rafiei, M. H., & Adeli, H. (2017). NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dynamics and Earthquake Engineering, 100, 417-427.

  35. Wang, Q., Guo, Y., Yu, L., & Li, P. (2017). Earthquake prediction based on spatio-temporal data mining: an LSTM network approach. IEEE Transactions on Emerging Topics in Computing, 8(1), 148-158.

  36. DeVries, P. M., Viégas, F., Wattenberg, M., & Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560(7720), 632-634.

  37. Jasperson, H. A., Bolton, D. C., Johnson, P. A., Marone, C., & Dehoop, M. (2019, December). Unsupervised classification of acoustic emissions from catalogs and fault time-to-failure prediction. In AGU Fall Meeting Abstracts (Vol. 2019, pp. S53A-06).

  38. Lin, J. W., & Chiou, J. S. (2019). Active probability backpropagation neural network model for monthly prediction of probabilistic seismic hazard analysis in Taiwan. IEEE Access, 7, 108990-109014.

  39. Feng, B., & Fox, G. C. (2020). TSEQPREDICTOR: Spatiotemporal Extreme Earthquakes Forecasting for Southern California. arXiv preprint arXiv:2012.14336.

  40. Kail, R., Zaytsev, A., & Burnaev, E. (2020). Recurrent Convolutional Neural Networks help to predict location of Earthquakes. arXiv preprint arXiv:2004.09140.

  41. Lin, J. W. (2020). Researching significant earthquakes in Taiwan using two back-propagation neural network models. Natural Hazards, 103(3), 3563-3590.

  42. Mignan, A., & Broccardo, M. (2020). Neural network applications in earthquake prediction (1994–2019): Meta‐analytic and statistical insights on their limitations. Seismological Research Letters, 91(4), 2330-2342.

  43. Mulia, I. E., Gusman, A. R., & Satake, K. (2020). Applying a deep learning algorithm to tsunami inundation database of megathrust earthquakes. Journal of Geophysical Research: Solid Earth, 125(9), e2020JB019690.

  44. Yamaga, N., & Mitsui, Y. (2019). Machine learning approach to characterize the postseismic deformation of the 2011 Tohoku‐oki earthquake based on recurrent neural network. Geophysical Research Letters, 46(21), 11886-11892.

  45. Zhu, S., Li, S., Peng, Z., & Xie, Y. (2019). Reinforcement learning of spatio-temporal point processes. arXiv e-prints, arXiv-1906.

  46. Al Banna, M. H., Ghosh, T., Al Nahian, M. J., Taher, K. A., Kaiser, M. S., Mahmud, M., ... & Andersson, K. (2021). Attention-Based Bi-Directional Long-Short Term Memory Network for Earthquake Prediction. IEEE Access, 9, 56589-56603.

  47. Tehseen, R., Farooq, M. S., & Abid, A. (2021). A framework for the prediction of earthquake using federated learning. PeerJ Computer Science, 7, e540.

  48. Yousefzadeh, M., Hosseini, S. A., & Farnaghi, M. (2021). Spatiotemporally explicit earthquake prediction using deep neural network. Soil Dynamics and Earthquake Engineering, 144, 106663.

  49. Shokouhi, P., Girkar, V., Riviere, J., Shreedharan, S., Marone, C., Giles, C. L., & Kifer, D. Deep learning can predict laboratory quakes from active source seismic data. Geophysical Research Letters, e2021GL093187.

Last updated