Phase Association

Links individual arrival times picked at different stations to a common origin. It is a critical step in earthquake monitoring.

Used ML Approaches:

  • Artificial Neural Networks

Used Neural Networks:

  • GRU

  • TCN

Used Learning Procedures:

  • Unsupervised Learning

  • Supervised Learning

References:

  1. McBrearty, I. W., Gomberg, J., Delorey, A. A., & Johnson, P. A. (2019). Earthquake arrival association with backprojection and graph theory. Bulletin of the Seismological Society of America, 109(6), 2510-2531.

  2. McBrearty, I. W., Delorey, A. A., & Johnson, P. A. (2019). Pairwise association of seismic arrivals with convolutional neural networks. Seismological Research Letters, 90(2A), 503-509.

  3. Ross, Z. E., Yue, Y., Meier, M. A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856-869.

  4. Dickey, J., Borghetti, B., Junek, W., & Martin, R. (2020). Beyond correlation: A path‐invariant measure for seismogram similarity. Seismological Research Letters, 91(1), 356-369.

Last updated