Phase Picking

It refers to the identification and measurement of arrival times of distinct seismic phases (P-wave or S-wave phases) within an earthquake waveform. This has applications such as in earthquake location or seismic velocity inversion using travel-time-based methods.

Used ML Approaches:

  • Artificial Neural Networks

  • K‐Means

  • Hidden Markov Model

  • Fuzzy Logic

Used Neural Networks:

  • CNN

  • FC

  • RNN

  • GRU

  • Transformer

  • LSTM

  • ResNet

  • CapsNet

  • Siamese

  • Autoencoder

  • DeepLab

  • VGG

  • U-Net

  • R-CNN

  • Attention

  • GAN

Used Learning Procedures:

  • Supervised Learning

  • Unsupervised Learning

  • Transfer Learning

References:

  1. Dokht, R. M., Kao, H., Visser, R., & Smith, B. (2019). Seismic event and phase detection using time–frequency representation and convolutional neural networks. Seismological Research Letters, 90(2A), 481-490.

  2. Zhou, Y., Yue, H., Kong, Q., & Zhou, S. (2019). Hybrid event detection and phase‐picking algorithm using convolutional and recurrent neural networks. Seismological Research Letters, 90(3), 1079-1087.

  3. Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., & Fang, L. (2019). Deep learning for seismic phase detection and picking in the aftershock zone of 2008 Mw7. 9 Wenchuan Earthquake. Physics of the Earth and Planetary Interiors, 293, 106261.

  4. Guo, C., Zhu, T., Gao, Y., Wu, S., & Sun, J. (2020). Aenet: Automatic picking of p-wave first arrivals using deep learning. IEEE Transactions on Geoscience and Remote Sensing, 59(6), 5293-5303.

  5. Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 1-12.

  6. Soto, H., & Schurr, B. (2021). DeepPhasePick: a method for detecting and picking seismic phases from local earthquakes based on highly optimized convolutional and recurrent deep neural networks. Geophysical Journal International, 227(2), 1268-1294.

  7. Zhu, W., Tai, K. S., Mousavi, S. M., & Beroza, G. C. (2019, December). An end-to-end earthquake monitoring method for joint earthquake detection and association using deep learning. In AGU Fall Meeting Abstracts (Vol. 2019, pp. S43D-0681).

  8. Saad, O. M., & Chen, Y. (2020). Earthquake detection and P-wave arrival time picking using capsule neural network. IEEE Transactions on Geoscience and Remote Sensing.

  9. Wiszniowski, J., Plesiewicz, B., & Lizurek, G. (2021). Machine learning applied to anthropogenic seismic events detection in Lai Chau reservoir area, Vietnam. Computers & Geosciences, 146, 104628.

  10. Xiao, Z., Wang, J., Liu, C., Li, J., Zhao, L., & Yao, Z. (2021). Siamese Earthquake Transformer: A pair‐input deep‐learning model for earthquake detection and phase picking on a seismic array. Journal of Geophysical Research: Solid Earth, 126(5), e2020JB021444.

  11. Dai, H., & MacBeth, C. (1995). Automatic picking of seismic arrivals in local earthquake data using an artificial neural network. Geophysical journal international, 120(3), 758-774.

  12. Dai, H., & MacBeth, C. (1997). Application of back-propagation neural networks to identification of seismic arrival types. Physics of the Earth and Planetary Interiors, 101(3-4), 177-188.

  13. Dai, H., & MacBeth, C. (1997). The application of back‐propagation neural network to automatic picking seismic arrivals from single‐component recordings. Journal of Geophysical Research: Solid Earth, 102(B7), 15105-15113.

  14. Wang, J., & Teng, T. L. (1997). Identification and picking of S phase using an artificial neural network. Bulletin of the Seismological Society of America, 87(5), 1140-1149.

  15. Zhao, Y., & Takano, K. (1999). An artificial neural network approach for broadband seismic phase picking. Bulletin of the Seismological Society of America, 89(3), 670-680.

  16. Gentili, S., & Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. Journal of Seismology, 10(1), 39-63.

  17. Ross, Z. E., Meier, M. A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 2894-2901.

  18. Saad, O. M., Inoue, K., Shalaby, A., Samy, L., & Sayed, M. S. (2018). Automatic arrival time detection for earthquakes based on stacked denoising autoencoder. IEEE Geoscience and Remote Sensing Letters, 15(11), 1687-1691.

  19. Yu, Y., Lin, J., Zhang, L., Liu, G., Hu, J., Tan, Y., & Zhang, H. (2018, August). Identification of seismic wave first arrivals from earthquake records via deep learning. In International Conference on Knowledge Science, Engineering and Management (pp. 274-282). Springer, Cham.

  20. Zheng, J., Lu, J., Peng, S., & Jiang, T. (2018). An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks. Geophysical Journal International, 212(2), 1389-1397.

  21. Chen, Y., Zhang, G., Bai, M., Zu, S., Guan, Z., & Zhang, M. (2019). Automatic waveform classification and arrival picking based on convolutional neural network. Earth and Space Science, 6(7), 1244-1261.

  22. Pardo, E., Garfias, C., & Malpica, N. (2019). Seismic phase picking using convolutional networks. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 7086-7092.

  23. Wang, J., Xiao, Z., Liu, C., Zhao, D., & Yao, Z. (2019). Deep learning for picking seismic arrival times. Journal of Geophysical Research: Solid Earth, 124(7), 6612-6624.

  24. Woollam, J., Rietbrock, A., Bueno, A., & De Angelis, S. (2019). Convolutional neural network for seismic phase classification, performance demonstration over a local seismic network. Seismological Research Letters, 90(2A), 491-502.

  25. Wu, H., Zhang, B., Li, F., & Liu, N. (2019). Semiautomatic first-arrival picking of microseismic events by using the pixel-wise convolutional image segmentation method. Geophysics, 84(3), V143-V155.

  26. Zhu, W., & Beroza, G. C. (2019). PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261-273.

  27. He, Z., Peng, P., Wang, L., & Jiang, Y. (2020). Enhancing Seismic P-Wave Arrival Picking by Target-Oriented Detection of the Local Windows Using Faster-RCNN. IEEE Access, 8, 141733-141747.

  28. He, Z., Peng, P., Wang, L., & Jiang, Y. (2020). PickCapsNet: capsule network for automatic p-wave arrival picking. IEEE Geoscience and Remote Sensing Letters, 18(4), 617-621.

  29. Johnson, S. W., Chambers, D. J., Boltz, M. S., & Koper, K. D. (2021). Application of a convolutional neural network for seismic phase picking of mining-induced seismicity. Geophysical Journal International, 224(1), 230-240.

  30. Lee, E. J., Liao, W. Y., Mu, D., Wang, W., & Chen, P. (2020). GPU‐accelerated automatic microseismic monitoring algorithm (GAMMA) and its application to the 2019 Ridgecrest earthquake sequence. Seismological Research Letters, 91(4), 2062-2074.

  31. Saad, O. M., & Chen, Y. (2020). Automatic waveform-based source-location imaging using deep learning extracted microseismic signals. Geophysics, 85(6), KS171-KS183.

  32. Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz, N. B., ... & Earle, P. S. (2021). Leveraging Deep Learning in Global 24/7 Real‐Time Earthquake Monitoring at the National Earthquake Information Center. Seismological Society of America, 92(1), 469-480.

  33. Yuan, C., & Zhang, J. (2019). Applying deep learning to teleseismic phase detection and picking: PcP and PKiKP cases. arXiv preprint arXiv:1910.09049.

  34. Zhang, G., Lin, C., & Chen, Y. (2020). Convolutional neural networks for microseismic waveform classification and arrival picking. Geophysics, 85(4), WA227-WA240.

  35. Zhang, H., Ma, C., Jiang, Y., Li, T., Pazzi, V., & Casagli, N. (2021). Integrated processing method for microseismic signal based on deep neural network. Geophysical Journal International, 226(3), 2145-2157.

  36. Zhang, J., & Sheng, G. (2020). First arrival picking of microseismic signals based on nested U-Net and Wasserstein Generative Adversarial Network. Journal of Petroleum Science and Engineering, 195, 107527.

  37. Zheng, J., Harris, J. M., Li, D., & Al-Rumaih, B. (2020). SC-PSNET: A deep neural network for automatic P-and S-phase detection and arrival-time picker using 1C recordings. Geophysics, 85(4), U87-U98.

  38. Zheng, J., Shen, S., Jiang, T., & Zhu, W. (2020). Deep neural networks design and analysis for automatic phase pickers from three-component microseismic recordings. Geophysical Journal International, 220(1), 323-334.

  39. Zhu, W., Li, X., Liu, C., Xue, F., & Han, Y. (2019). An STFT-LSTM system for P-wave identification. IEEE Geoscience and Remote Sensing Letters, 17(3), 519-523.

  40. Liao, W. Y., Lee, E. J., Mu, D., Chen, P., & Rau, R. J. (2021). ARRU Phase Picker: Attention Recurrent‐Residual U‐Net for Picking Seismic P‐and S‐Phase Arrivals. Seismological Research Letters.

  41. Saad, O. M., & Chen, Y. (2021). CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking. IEEE Transactions on Geoscience and Remote Sensing.

  42. Beyreuther, M., Hammer, C., Wassermann, J., Ohrnberger, M., & Megies, T. (2012). Constructing a Hidden Markov Model based earthquake detector: application to induced seismicity. Geophysical Journal International, 189(1), 602-610.

  43. Chen, Y. (2020). Automatic microseismic event picking via unsupervised machine learning. Geophysical Journal International, 222(3), 1750-1764.

  44. Ross, Z. E., Meier, M. A., & Hauksson, E. (2018). P wave arrival picking and first‐motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123(6), 5120-5129.

Last updated