Seismic Migration
Relocating seismic events to the position they occurred in the subsurface by removing acquisition effects.
Used ML Approaches:
Artificial Neural Networks
Used Neural Networks:
RNN
CNN
FC
AlexNet
VGG
U-Net
GAN
Used Learning Procedures:
Unsupervised Learning
Supervised Learning
References:
Vamaraju, J., & Sen, M. K. (2019). Unsupervised physics-based neural networks for seismic migration. Interpretation, 7(3), SE189-SE200.
Lu, Y., Sun, H., Wang, X., Liu, Q., & Zhang, H. (2020). Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning. Geophysics, 85(5), S269-S283.
Cheng, Q., Zhang, J., & Liu, W. (2021). Extracting Fresnel zones from migrated dip-angle gathers using a convolutional neural network. Exploration Geophysics, 52(2), 211-220.
Liu, W., Cheng, Q., Liu, L., Wang, Y., & Zhang, J. (2020). Accelerating High-Resolution Seismic Imaging by Using Deep Learning. Applied Sciences, 10(7), 2502.
Liu, Z., Chen, Y., & Schuster, G. (2020). Deep convolutional neural network and sparse least-squares migration. Geophysics, 85(4), WA241-WA253.
Kaur, H., Pham, N., & Fomel, S. (2020). Improving the resolution of migrated images by approximating the inverse Hessian using deep learning. Geophysics, 85(4), WA173-WA183.
Vamaraju, J., Vila, J., Araya-Polo, M., Datta, D., Sidahmed, M., & Sen, M. K. (2021). Minibatch least-squares reverse time migration in a deep-learning framework. Geophysics, 86(2), S125-S142.
Last updated