Machine Learning in Seismology
  • An Updating Glossary of Seismological Tasks and Relevant Machine Learning Techniques
  • Seismological Tasks
    • Seismic Denoising
    • Event Discrimination
    • Event Detection
    • Phase Picking
    • Phase Association
    • First Motion Polarity Determination
    • Fault Detection
    • Horizon Picking
    • Salt Body Detection
    • Seismic Facies Analysis
    • Seismic Migration
    • Dispersion Curve Extraction
    • Seismic Velocity Picking
    • Seismic Deconvolution
    • Seismic Trace Interpolation
    • First Break Picking
    • Data Extrapolation
    • Exploratory Data Analyses
    • Earthquake Forecasting
    • Ground Motion Characterization
    • Seismic Wave Simulation
    • Earthquake Location Estimation
    • Earthquake Magnitude Estimation
    • Earthquake Source Mechanism
    • Reservoir Characterization
    • Impedance Model Building
    • Seismic Velocity Model Building
  • Machine Learning Terms and Methods
  • Public Datasets
Powered by GitBook
On this page
  • Used ML Approaches:
  • Used Neural Networks:
  • Used Learning Procedures:
  • References:

Was this helpful?

  1. Seismological Tasks

Exploratory Data Analyses

To analyze recorded seismic data sets to find patterns and summarize their main characteristics, often using clustering approaches or other data visualization methods.

Used ML Approaches:

  • Gaussian Naıve Bayes

  • Logistic Regression

  • Linear Discriminant Analysis

  • Random Forest

  • Support Vector Machine

  • K-Nearest Neighbour

  • Sequencing

  • Decision Tree

  • Gaussian Mixture Model

  • K‐Means

  • Hidden Markov Model

  • Bayesian Network

  • Regression Trees

  • Artificial Neural Networks

Used Neural Networks:

  • SOM

  • CNN

  • FC

  • Autoencoder

Used Learning Procedures:

  • Supervised Learning

  • Unsupervised Learning

References:

  1. Johnson, C. W., Ben‐Zion, Y., Meng, H., & Vernon, F. (2020). Identifying different classes of seismic noise signals using unsupervised learning. Geophysical Research Letters, 47(15), e2020GL088353.

  2. Kim, D., Lekić, V., Ménard, B., Baron, D., & Taghizadeh-Popp, M. (2020). Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region. Science, 368(6496), 1223-1228.

  3. Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., & Brenguier, F. (2020). Machine learning reveals the seismic signature of eruptive behavior at Piton de la Fournaise volcano. Geophysical research letters, 47(3), e2019GL085523.

  4. McKean, S. H., Priest, J. A., Dettmer, J., & Eaton, D. W. (2019). Quantifying fracture networks inferred from microseismic point clouds by a Gaussian mixture model with physical constraints. Geophysical Research Letters, 46(20), 11008-11017.

  5. Seydoux, L., Balestriero, R., Poli, P., De Hoop, M., Campillo, M., & Baraniuk, R. (2020). Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nature communications, 11(1), 1-12.

  6. Witsil, A. J., & Johnson, J. B. (2020). Analyzing continuous infrasound from Stromboli volcano, Italy using unsupervised machine learning. Computers & Geosciences, 140, 104494.

  7. Bolton, D. C., Shokouhi, P., Rouet‐Leduc, B., Hulbert, C., Rivière, J., Marone, C., & Johnson, P. A. (2019). Characterizing acoustic signals and searching for precursors during the laboratory seismic cycle using unsupervised machine learning. Seismological Research Letters, 90(3), 1088-1098.

  8. Chamarczuk, M., Nishitsuji, Y., Malinowski, M., & Draganov, D. (2020). Unsupervised learning used in automatic detection and classification of ambient‐noise recordings from a large‐N array. Seismological Research Letters, 91(1), 370-389.

  9. Ross, Z. E., Trugman, D. T., Azizzadenesheli, K., & Anandkumar, A. (2020). Directivity modes of earthquake populations with unsupervised learning. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018299.

  10. Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018). Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field. Science advances, 4(5), eaao2929.

  11. Hincks, T., Aspinall, W., Cooke, R., & Gernon, T. (2018). Oklahoma's induced seismicity strongly linked to wastewater injection depth. Science, 359(6381), 1251-1255.

  12. Larson, J., Kramar, D., & Leonard, K. (2020). A geostatistical analysis of seismicity in Oklahoma using regression trees and neural networks. Physical Geography, 1-17.

  13. Strecker, U., & Uden, R. (2002). Data mining of 3D poststack seismic attribute volumes using Kohonen self-organizing maps. The Leading Edge, 21(10), 1032-1037.

  14. Bauer, K., Pratt, R. G., Haberland, C., & Weber, M. (2008). Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada). Geophysical Research Letters, 35(19).

  15. Köhler, A., Ohrnberger, M., & Scherbaum, F. (2009). Unsupervised feature selection and general pattern discovery using Self-Organizing Maps for gaining insights into the nature of seismic wavefields. Computers & Geosciences, 35(9), 1757-1767.

  16. Braeuer, B., & Bauer, K. (2015). A new interpretation of seismic tomography in the southern Dead Sea basin using neural network clustering techniques. Geophysical Research Letters, 42(22), 9772-9780.

  17. Unglert, K., & Jellinek, A. M. (2017). Feasibility study of spectral pattern recognition reveals distinct classes of volcanic tremor. Journal of Volcanology and Geothermal Research, 336, 219-244.

  18. Snover, D., Johnson, C. W., Bianco, M. J., & Gerstoft, P. (2021). Deep clustering to identify sources of urban seismic noise in Long Beach, California. Seismological Society of America, 92(2A), 1011-1022.

PreviousData ExtrapolationNextEarthquake Forecasting

Last updated 3 years ago

Was this helpful?